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We report on the atomic scale phenomena responsible for the variation of

oxygen solubility in Zr and Ru. First-principles calculations reveal that the

topologies of the charge densities in these hexagonal close-packed metals are

distinct. Neither element was found to possess the topology of the prototype,

Mg. There are 12 bond paths terminating at each Ru atom. These are the bonds

between nearest neighbors. Only five bond paths terminate at each Zr atom and

the Zr atoms are not bound to one another. Instead, they are bonded through

non-nuclear maxima. As a result, channels of low charge density that can

accommodate oxygen anions are present in Zr.

1. Introduction

Oxygen dissolves interstitially to the octahedral holes of

hexagonal close-packed (h.c.p.) metals. However, the extent to

which it dissolves, its solubility, is remarkably variable. The

Group IV metals (Ti, Zr, Hf) are characterized by appreciable

oxygen solubility of the order of 20 at.%. In contrast, oxygen

is nearly insoluble in the Group VIII h.c.p. metals (Ru, Os).

The underlying structure responsible for this remarkable

variation arises from the different charge-density topologies of

these metals.

The topological theory of molecular structure, the ‘atoms in

molecules’ (AIM) theory, was first articulated by Bader. This

theory has been applied to a variety of crystalline systems

(Bader, 1990; Zou & Bader, 1994). The first application of

AIM theory to the solid state revealed that there are no

second-neighbor bonds in face-centered cubic (f.c.c.) transi-

tion metals (Eberhart et al., 1991). Subsequent studies have

supported that observation (Eberhart et al., 1992; Kioussis et

al., 2002), and have also been extended to show that

nonmagnetic body-centered cubic (b.c.c.) transition metals

possess only first-neighbor bonds (Eberhart, 1996a). However,

there is no reason why second-neighbor bonds should not

exist. As Zou pointed out, the only symmetry requirement is

that the non-nuclear critical points lie on the Wigner–Seitz cell

(Zou & Bader, 1994). Moreover, a more recent study of f.c.c.

and b.c.c. iron has shown that second-neighbor bonds are

present in magnetic transition metals (Jones, Eberhart &

Clougherty, 2008).

This ability to unambiguously define bonds has made AIM

theory a useful tool for the investigation of ‘bonding’ in

materials ranging from high-temperature alloys to biological

systems. These investigations have yielded interesting results.

The geometry of the charge density at bond points was found

to correlate with the single-crystal elastic moduli in f.c.c. and

b.c.c. transition metals (Eberhart, 1996a,b). Second-neighbor

bond paths were found in B2 ionic crystals (Luaña et al., 1997)

and transition-metal aluminides (Eberhart & Giamei, 1998),

with the magnitude of the latter correlating to failure prop-

erties (Eberhart, 2001). Second-neighbor bond paths were

also found in iron, where a well known magnetic phase change

was shown to be a topological phase transition (Jones, Eber-

hart & Clougherty, 2008). Other studies have used the

geometry of the charge density at bond points to offer first-

principles explanations of the anomalous behavior of iridium

under shear (Kioussis et al., 2002), as well as the motion of Ta

and Mo screw dislocation cores (Jones, Eberhart, Clougherty

& Woodward, 2008).

One of the attractive features of AIM theory is its reliance

on the charge density, a quantum-mechanical observable,

which can be measured via X-ray diffraction techniques and

can be calculated by first-principle methods. Numerous studies

have been performed in an effort to compare the topologies

found by these two approaches. In an overwhelming majority

of cases, the experimental and theoretical topologies are

identical (Koritsanszky & Coppens, 2001). Furthermore, as

both techniques have advanced, the values of the charge

density measured by the two approaches have converged

(Farrugia & Evans, 2005; Arnold et al., 2000). We expect this

trend to continue and in the near future there will be negli-

gible difference between calculated and measured charge

densities. This fact can be used to great effect in the fields of

materials science and condensed matter physics, where accu-

rate density functional theory (DFT) calculations have

become routine. Given this fact, it becomes plausible to use

first-principle methods to uncover structure–property rela-

tionships, which are then subject to experimental confirma-

tion.

Incorporating first-principles methods into the discovery

process could accelerate the pace of scientific understanding

and technological advance. As an example, here we compare

the topologies of two h.c.p. elements, Zr and Ru, by way of

first-principles calculations. Surprisingly, while the crystal

structure of the two metals is identical, we find that their



topologies, and hence their structures, are not. The Group IV

metal, Zr, is characterized by five bond paths per atom and Ru

by 12. The unusual and unexpected topology of Zr creates

channels of low charge density, which we argue are the cause

of the metal’s high oxygen solubility.

The relationship between the topology of the charge density

and many properties of materials can be rationalized from the

Hohenberg–Kohn theorem, which states that a system’s

ground-state properties are a consequence of its charge

density, a scalar field denoted here as �ðrÞ (Hohenberg &

Kohn, 1964). Bader noted that the essence of a molecule’s

structure must be contained within the topology of �ðrÞ. The

topology of a scalar field, in this case �ðrÞ, is given in terms of

its critical points (CPs), which are the zeros of the gradient of

this field. There are four kinds of CP in a three-dimensional

space: a local minimum, a local maximum and two kinds of

saddlepoint. These CPs are denoted by an index, which is the

number of positive curvatures minus the number of negative

curvatures. For example, a minimum CP has positive curvature

in three orthogonal directions; therefore it is called a (3, 3) CP.

The first number is simply the number of dimensions of the

space, and the second number is the net number of positive

curvatures. A maximum is denoted by (3, �3), since all three

curvatures are negative. A saddlepoint with two of the three

curvatures negative is denoted (3, �1), while the other

saddlepoint is a (3, 1) CP.

2. Methods

In this study, charge densities were calculated using the Vienna

ab-initio Simulation Package (VASP) version 4.6 (Kresse &

Furthmuller, 1996), which is based on the projector

augmented wave method (PAW) (Kresse & Joubert, 1999). A

�-centered grid was employed to retain full hexagonal

symmetry. The calculations reported here were performed

using a grid of 25� 25� 15 k points for both metals. The PAW

potentials were used for both Zr and Ru, and the kinetic

energy cutoffs used were 193.3 eV for Zr and 266.6 eV for Ru.

A total of 6144 (16 � 16 � 24) plane waves were employed in

the Zr calculations and 4704 (14 � 14 � 24) plane waves were

used in the Ru calculations. The Perdew–Wang generalized

gradient corrections (Perdew et al., 1992) were included along

with the Vosko–Wilk–Nusair interpolation (Vosko et al., 1980)

of the correlation part of the exchange-correlation functional.

These calculations were performed using the published lattice

constants (Villars & Calvert, 1985), as well as a variety of

others within �10% of these values. The topologies, calcu-

lated using Tecplot (Tecplot, 2008), were not affected by

changes in the lattice constants. To check the stability of these

structures, we also calculated the vibrational frequencies at the

published lattice constants. There were no negative or

imaginary frequencies.

3. Results

Calculations performed on nonmagnetic monotonic b.c.c.

(f.c.c.) transition metals show that the ground-state total

charge densities share the same topology as the prototype

structure, W (Cu) (Eberhart, 1996a,b; Jones, Eberhart &

Clougherty, 2008). Each atom has 8 (12) bond paths to its

nearest-neighbor atoms. In these systems it is the geometry of

the charge density around the CPs that leads to differences in,

for example, single-crystal shear moduli (Eberhart, 1996b).

However, the same trend is not observed in the h.c.p. metals.

Neither Zr nor Ru have the topology of the prototype, Mg. To

facilitate the visualization of the three-dimensional bonding in

the two transition metals, we begin with an examination of a

two-dimensional slice, in particular, a slice through a basal

plane. Shown in Figs. 1 and 2 are contour plots of the charge

density in these planes. Here regions of low charge density are

darker and the regions near the nucleus are shown as spheres.

As expected, the densities around the atomic nuclei are

similar, although the regions between the atoms are quite
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Figure 1
Contour plot of the total charge density in the basal plane of Ru. The light
areas are regions of high charge density and the dark areas are regions of
low charge density. Each Ru atom is bound to its six nearest neighbors in
the plane, which can be recognized by the bond points, the saddles in the
contour plot. Three of the bond paths have been drawn in as lines forming
the face of adjoining tetrahedral holes, as shown on the right. For the
adjacent octahedral holes the region of low charge density is less
extended than for Zr (see Fig. 2).

Figure 2
Contour plot of the total charge density in the basal plane of Zr. The
shading is like that of Fig. 1. Here, however, each Zr atom is bound to
three pseudo atoms in the plane. In effect this results in five Zr atoms
being bound to one another through the tetrahedral hole, as shown on the
right. The bonding through the tetrahedral holes produces regions of
extremely low and extended charge-density minima centered on the
octahedral holes.



different. On the one hand, there are six bond CPs, the

saddlepoints, located on the boundaries between Ru atoms.

From any one of these, the charge density increases in the

direction of the atomic nuclei (positive curvature) and

decreases in the directions tangential to the atomic spheres

(negative curvature). The bond path is given by following the

gradient of the charge density from a bond CP toward the

bound atoms. Hence the bond paths in Ru (three are shown as

lines) are straight with every atom in the basal plane bound to

six other atoms in the same plane. In addition, each Ru atom is

bound to the three nearest-neighbor atoms above and below

the basal plane, giving rise to 12 nearest-neighbor bonds. The

three-dimensional bonding around adjoining tetrahedral holes

is depicted on the right-hand side of Fig. 1. This type of

nearest-neighbor bonding, where the atoms are joined by a

straight bond path, is typical for b.c.c. and f.c.c. transition

metals (Eberhart, 1996a,b; Jones, Eberhart & Clougherty,

2008).

On the other hand, for Zr the bonding is quite different,

with only three basal-plane bond paths originating from the

face of adjoining tetrahedral holes and terminating at each

atomic site (Fig. 2). While the bond paths can easily be iden-

tified, the topology near the point of intersection cannot, as

the charge density is nearly flat in these regions (see Appendix

A). However, the simplest topology that will give rise to this

bonding pattern will have pseudo atoms, (3, �3) CPs, at the

points of intersection. These pseudo atoms are bound to the

five Zr atoms at the vertices of adjacent tetrahedral holes. In

effect, h.c.p. Zr and h.c.p. Ru possess different structures. This

is in contrast to the nonmagnetic f.c.c. and b.c.c. transition

metals, which all share the same structure characterized by

nearest-neighbor bond paths (Eberhart, 1996a). In f.c.c. and

b.c.c. transition metals pseudo atoms are only present in

magnetic systems. The spin minority density in high-spin f.c.c.

Fe (2.5 �B), for example, is characterized by bonding through

pseudo atoms. In this case the pseudo atoms allow the f.c.c. Fe

to possess a pseudo-b.c.c. topology by allowing each Fe atom

to form eight �-bonds directed towards the tetrahedral holes.

This is due to the fact that d-orbitals reducing as T2g vastly

outnumber those reducing as Eg at moments in excess of

2.5 �B. As such, 12 bonds cannot be formed, as that would

require both the T2g and Eg representations (Jones, Eberhart

& Clougherty, 2008). Such a change in topology due to an

electron deficiency can also explain the pseudo atoms in h.c.p.

Zr.

4. Discussion

The presence of five bond paths in Zr, as opposed to 12 in Ru,

can be rationalized by way of directed valence. Each nuclear

site sits in a D3h environment, see Figs. 1 and 2. In this

environment there are two symmetry-unique sets of �-bonds:

those in and those inclined to the basal plane. Six �-bonds

directed towards the nearest-neighbor atoms in the basal

plane reduce as �basal
� ¼ A01 þ A02 þ 2E0. Similarly, six �-bonds

directed towards the nearest-neighbor atoms above and below

the basal plane reduce as �inclined
� ¼ A01 þ E0 þ A002 þ E00. The

12 directed �-bonds will transform as the sum

�total
� ¼ �basal

� þ �inclined
� . For a central atom orbital to be

available to form these 12 directed bonds, it must transform as

one of the irreducible representations in �total
� . In a transition

metal we must consider the s-, p- and d-orbitals. While

s-orbitals always transform as the totally symmetric repre-

sentation, the p-orbitals are broken into two sets. The

pz-orbitals transform as A002 and the px and py pair as E0.

Similarly, the d-orbitals are broken into three sets, dz2 ,

ðdx2�y2 ; dxyÞ and ðdxz; dyzÞ. These transform as A01, E0 and E00,

respectively. In this case all the orbitals on the central atom

have the correct symmetry to form directed bonds.

In the case of Zr, some d-orbitals cannot participate in

directed bonding. The three bonds in the basal plane of Zr

reduce as �equatorial
� ¼ A01 þ E0. The bonds normal to the basal

plane reduce as �axial
� ¼ A01 þ A002. The s- and p-orbitals can still

participate in equatorial and axial bonding, but the ðdxz; dyzÞ

pair, which transforms as E00, cannot. Thus, while the eight

valence electrons in Ru will fill all five d-orbitals, the four

valence electrons in Zr will occupy the states that give rise to

five directed bonds, as the (dxzand dyz) character is in states

above the Fermi energy (Blaha et al., 1988).

A particularly noticeable feature of the Zr topology is the

presence of channels of low charge density perpendicular to

the basal plane and passing through the octahedral holes (see

Fig. 2). In these channels the region of depleted charge density

is considerably extended in comparison to the same channels

in Ru (Fig. 1). This is significant because the charge density

along these channels will correlate with oxygen solubility.

It has been shown (Eberhart et al., 2005) that the energy of

solution can always be expressed as the sum of two terms �E1

and �E2, which represent the separate changes to the energy

of the solute and solvent, respectively. In the case of oxygen

solubility the first term, �E1, is the formation energy of an

interstitial oxygen anion from an oxygen atom, and �E2 is the

energy change of the metal. In the absence of large lattice

reconstructions, �E2 is dominated by the redistribution of

metal electrons in response to the anion and �E1 does not

vary substantially from one metal to another. Thus, relative

oxygen solubility depends on lattice-specific variations of the

electron redistribution brought about by an interstitial oxygen

atom. In turn, the energy to redistribute metal electrons is

derived principally from electrostatics, i.e. the work done to

embed the oxygen anion in the charge density of the inter-

stitial site. Clearly, the work needed to embed an oxygen

interstitial in the charge density around an h.c.p. octahedral

hole will be smaller for Zr than Ru.

As we have shown, the topological analysis of the electron

charge density provides materials scientists with a tool to

develop new structure–property relationships. Here we have

reported on the topology of the charge density in two

monotonic h.c.p. metals, Ru and Zr, and have demonstrated

that there is a relationship between the bonding topologies of

these metals and the oxygen solubility.

The result here points to the advantages that would follow

from a database of topological structures not unlike current

crystal-structure databases. Acta Crystallographica Sections C
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and E offer the ideal forum to share the topological structure

of solid-state systems with other researchers. The availability

of this resource would allow researchers to quickly identify

interesting topologies and then investigate the geometry of the

corresponding charge density, and when combined with

experimental data, to uncover charge-density structure–

property relationships.

APPENDIX A
Just as any measurement is subject to experimental error,

numerical solutions to the Kohn–Sham equations are char-

acterized by some intrinsic computational error. When it

comes to identifying topologies this error will be significant in

regions where the charge density is flat, as is the case around

the tetrahedral holes of Zr. To be specific, Table 1 compares

principal curvatures at the bond CPs in the basal plane of Zr

found using VASP. It can be seen that the curvature parallel to

the bond path in the basal plane, �3, is small. Furthermore, the

charge density at these bond CPs is only 1� 10�3 e Å�3 lower

than that at the pseudo atom. As a result, the topology in this

region may be sensitive to the basis set employed in the

expansion of the one-electron wavefunctions and to the

methods used to calculate the charge density.

To test this possibility, we performed all electron calcula-

tions using a linear augmented Slater-type orbital (LASTO)

band method (Davenport, 1984), and the Amsterdam Density

Functional Package, using 68 and 125 atom clusters (de Velde

et al., 2001). While the two methods do not capture the same

topology around the tetrahedral holes, the Euler characteristic

around the holes and behavior of the bond paths away

(~0.1 Å) from these holes is unchanged. Thus, for ease of

discussion, we have chosen the simplest topology that satisfies

the Euler characteristic around the tetrahedral holes, that

found using VASP. If another topology were chosen, however,

the arguments presented here would remain unchanged. It will

be interesting to see whether experimental techniques are

sufficiently refined to settle the question.

We are grateful to the Defense Advanced Projects Agency

and the Office of Naval Research for their support of this

research.
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Table 1
The value of the charge density and principle curvatures at bond CPs in
Zr and Ru.

Here �0 is the charge density at the bond CP, �3 is the principal curvature
parallel to the bond path, and �1 and �2 are the two principal curvatures
perpendicular to the bond path. The density is in e Å�3 and the curvatures are
in e Å�5.

Bond CP �0 �1 �2 �3

Zr basal plane 0.190 �0.168 �0.080 0.041
Zr out of plane 0.178 �0.139 �0.139 0.114
Ru basal plane 0.363 �0.645 �0.629 2.448
Ru out of plane 0.401 �0.961 �0.754 2.636


